Face Recognition Technical Report

Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?
Erjin Zhou, Zhimin Cao, Qi Yin [PDF]

Face recognition performance improves rapidly with the recent deep learning technique developing and underlyinglarge training dataset accumulating. In this paper, we report our observations on how big data impacts the recognition performance. According to these observations, we build our Megvii Face Recognition System, which achieves 99.50% accuracy on the LFW benchmark, outperforming the previous state-of-the-art. Furthermore, we report the performance in a real-world security certification scenario. There still exists a clear gap between machine recognition
and human performance. We summarize our experiments and present three challenges lying ahead in recent face recognition. And we indicate several possible solutions towards these challenges. We hope our work will stimulate the community’s discussion of the difference between research
benchmark and real-world applications.